If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2-2q-4=0
a = 1; b = -2; c = -4;
Δ = b2-4ac
Δ = -22-4·1·(-4)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{5}}{2*1}=\frac{2-2\sqrt{5}}{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{5}}{2*1}=\frac{2+2\sqrt{5}}{2} $
| 4x-4+x=5x-1 | | -8-8x^2=-32 | | 2x+42+4x-18=180 | | 2x+42=4x-18 | | 64^7x=16 | | 5×+9=2+4x | | 9x-6-6x=x+9+x | | 3(x-1)=3x+10 | | .66b=5b-13 | | -4p-5(p+3)=-69 | | 3(x-5)=30*5 | | 3(x+2)+24=180 | | 7x+1=107x+1=10 | | X-5=-3+3x | | M=5;60^m | | 4x+24=9x-9 | | 31/4m=13 | | 3(2x-6)-7(2-5x)+6(-6x+2)=-8(3-3x) | | 3(4x+9)=7(2-5x)-2 | | 4+3p=p-12 | | 40=-3(x+3)+1 | | x+4/4=1-x+1/9 | | 13-5k=13 | | -4z^2+22z+42=0 | | 2-5(4x+8)=3(2x-7)+3 | | 20-2x+3=7 | | (4z+6)(7-z)=0 | | 11,600=r108 | | -11+13=-2x | | 6(x-3)+2=38 | | p−31/6=−2/12 | | 2x+-1x+-1×+x=-13 |